

Chapter 3 STRAIN

By: Ardiyansyah Syahrom

Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia

Expanding

the Research Horizon innovative • entrepreneurial • global

CHAPTER OBJECTIVES

- Define concept of normal strain
- Define concept of shear strain
- Determine normal and shear strain in engineering applications

UNIVERSITI TEKNOLOGI MALAYSIA

CHAPTER OUTLINE

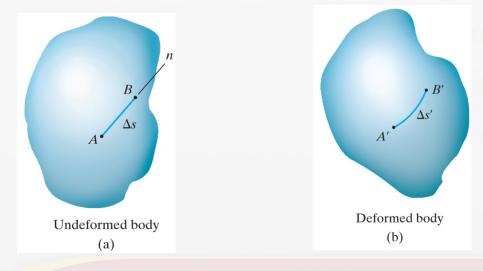
- 1. Deformation
- 2. Strain

UNIVERSITI TEKNOLOGI MALAYSIA

2.1 DEFORMATION

Deformation

- Occurs when a force is applied to a body
- Can be highly visible or practically unnoticeable
- Can also occur when temperature of a body is changed
- Is not uniform throughout a body's volume, thus change in geometry of any line segment within body may vary along its length


2.1 DEFORMATION

To simplify study of deformation

- Assume lines to be very short and located in neighborhood of a point, and
- Take into account the orientation of the line segment at the point

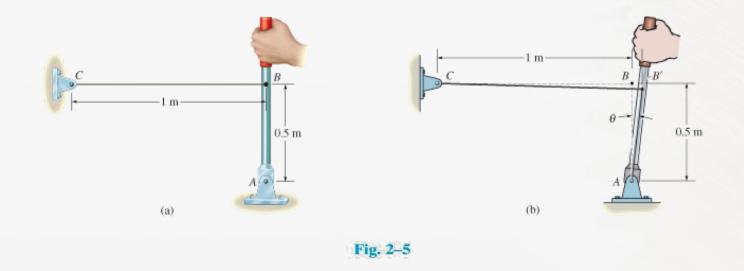
Normal strain

- Defined as the elongation or contraction of a line segment per unit of length
- Consider line AB in figure below
- After deformation, Δs changes to $\Delta s'$

Normal strain

Defining average normal strain using \varepsilon_{avg} (epsilon)

$$\varepsilon_{avg} = \frac{\text{final length - original length}}{\text{original length}} = \frac{\Delta s' - \Delta s}{\Delta s}$$


UNIVERSITI TEKNOLOGI MALAYSIA

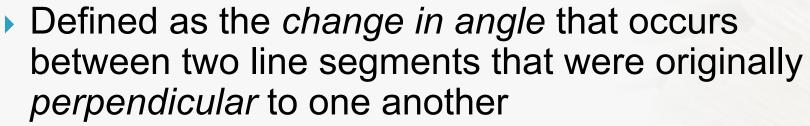
Units

- Normal strain is a *dimensionless quantity*, as it's a ratio of two lengths
- But common practice to state it in terms of meters/meter (m/m)
- ε is small for most engineering applications, so is normally expressed as micrometers per meter (μ m/m) where 1 μ m = 10⁻⁶
- Also expressed as a percentage, e.g., 0.001 m/m = 0.1 %

EXAMPLE 2-2

A force acting on the grip of the lever arm shown in Fig. 2–5*a* causes the arm to rotate clockwise through an angle of $\theta = 0.002$ rad. Determine the average normal strain developed in the wire *BC*.

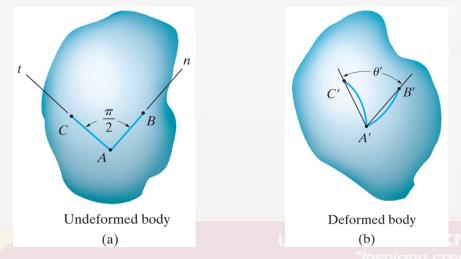
UNIVERSITI TEKNOLOGI MALAYSIA

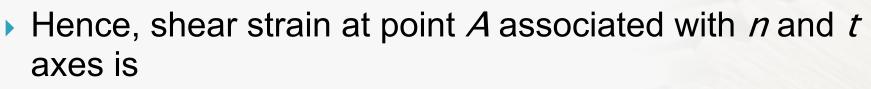

SOLUTION

Since $\theta = 0.002$ rad is small, the stretch in the wire *CB*, Fig. 2–5*b*, is $BB' = \theta (0.5 \text{ m}) = (0.002 \text{ rad})(0.5 \text{ m}) = 0.001 \text{ m}$. The average normal strain in the wire is therefore,

$$\epsilon_{\text{avg}} = \frac{BB'}{CB} = \frac{0.001}{1 \text{ m}} = 0.001 \text{ m/m}$$
 Ans

UNIVERSITI TEKNOLOGI MALAYSIA


Shear strain

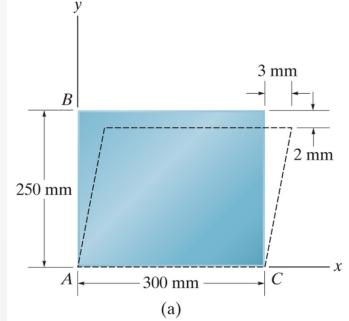

This angle is denoted by γ (gamma) and measured in radians (rad).

Shear strain

- Consider line segments AB and AC originating from same point A in a body, and directed along the perpendicular n and t axes
- After deformation, lines become curves, such that angle between them at A is θ '

Shear strain

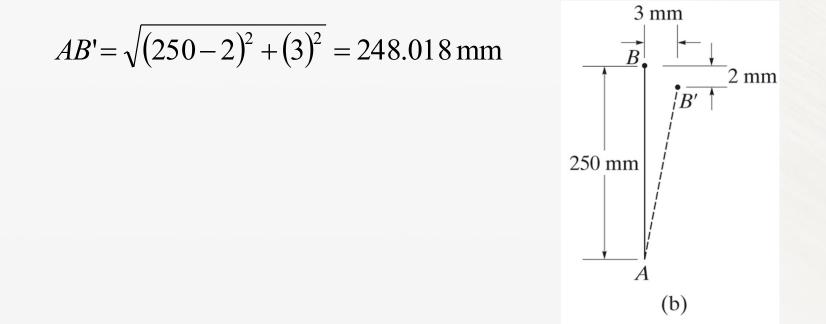
$$\gamma_{\rm nt} = \frac{\pi}{2} - \lim_{\substack{B \to A \text{ along } n \\ C \to A \text{ along } t}} \theta'$$


• If θ is smaller than $\pi/2$, shear strain is positive, otherwise, shear strain is negative

EXAMPLE 2.3

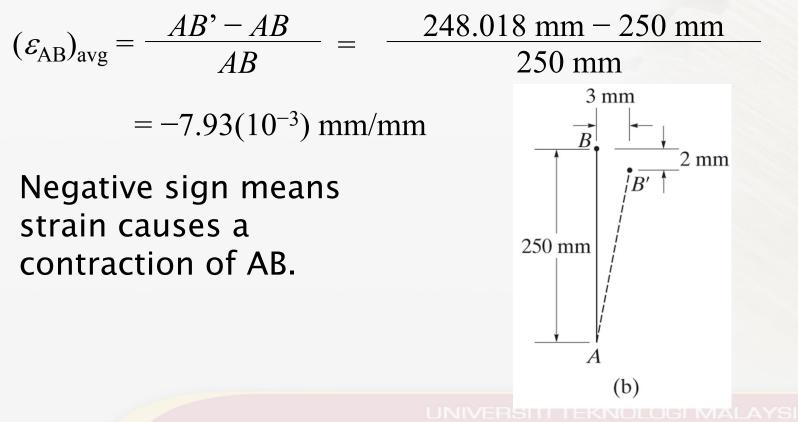
Plate is deformed as shown in figure. In this deformed shape, horizontal lines on the plate remain horizontal and do not change their length.

Determine

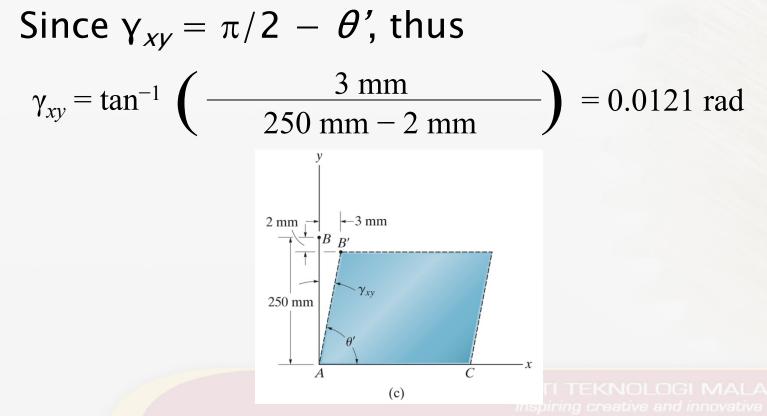

- (a) average normal strain along side *AB*,
- (b) average shear strain in the plate relative to x and y axes

UNIVERSITI TEKNOLOGI MALAYSIA "Inspiring creative and innovative minds"

EXAMPLE 2.3 (SOLN)


(a) Line *AB*, coincident with *y* axis, becomes line *AB*' after deformation. Length of line *AB*' is

UNIVERSITI TEKNOLOGI MALAYSIA


EXAMPLE 2.3 (SOLN)

(a) Therefore, average normal strain for *AB* is,

EXAMPLE 2.3 (SOLN)

(b) Due to displacement of B to B', angle BAC referenced from x, y axes changes to θ' .

